Asymmetric mechanosensitivity in a eukaryotic ion channel.

نویسندگان

  • Michael V Clausen
  • Viwan Jarerattanachat
  • Elisabeth P Carpenter
  • Mark S P Sansom
  • Stephen J Tucker
چکیده

Living organisms perceive and respond to a diverse range of mechanical stimuli. A variety of mechanosensitive ion channels have evolved to facilitate these responses, but the molecular mechanisms underlying their exquisite sensitivity to different forces within the membrane remains unclear. TREK-2 is a mammalian two-pore domain (K2P) K+ channel important for mechanosensation, and recent studies have shown how increased membrane tension favors a more expanded conformation of the channel within the membrane. These channels respond to a complex range of mechanical stimuli, however, and it is uncertain how differences in tension between the inner and outer leaflets of the membrane contribute to this process. To examine this, we have combined computational approaches with functional studies of oppositely oriented single channels within the same lipid bilayer. Our results reveal how the asymmetric structure of TREK-2 allows it to distinguish a broad profile of forces within the membrane, and illustrate the mechanisms that eukaryotic mechanosensitive ion channels may use to detect and fine-tune their responses to different mechanical stimuli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilayer-Mediated Structural Transitions Control Mechanosensitivity of the TREK-2 K2P Channel

The mechanosensitive two-pore domain (K2P) K+ channels (TREK-1, TREK-2, and TRAAK) are important for mechanical and thermal nociception. However, the mechanisms underlying their gating by membrane stretch remain controversial. Here we use molecular dynamics simulations to examine their behavior in a lipid bilayer. We show that TREK-2 moves from the "down" to "up" conformation in direct response...

متن کامل

Ranolazine decreases mechanosensitivity of the voltage-gated sodium ion channel Na(v)1.5: a novel mechanism of drug action.

BACKGROUND Na(V)1.5 is a mechanosensitive voltage-gated sodium-selective ion channel responsible for the depolarizing current and maintenance of the action potential plateau in the heart. Ranolazine is a Na(V)1.5 antagonist with antianginal and antiarrhythmic properties. METHODS AND RESULTS Mechanosensitivity of Na(V)1.5 was tested in voltage-clamped whole cells and cell-attached patches by b...

متن کامل

Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity

Acid-sensing ion channels (ASICs) and their interaction partners of the stomatin family have all been implicated in sensory transduction. Single gene deletion of asic3, asic2, stomatin, or stoml3 all result in deficits in the mechanosensitivity of distinct cutaneous afferents in the mouse. Here, we generated asic3(-/-):stomatin(-/-), asic3(-/-):stoml3(-/-) and asic2(-/-):stomatin(-/-) double mu...

متن کامل

The effects of acid-sensing ion channel ASIC3 and stomatin-like proteins on mechanosensation and nociception

Transformation of mechanical energy into electrical signals in mechanosensory neurons is essential for mechanosensation and nociception. This transformation occurs via sensory transduction channels that are activated by external force. Recent genetic and electrophysiological studies in Caenorhabditis elegans have directly shown that the degenerin/epithelial sodium channel (DEG/ENaC) ion channel...

متن کامل

Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function.

AIMS Members of the acid sensing ion channel (ASIC) family are strong candidates as mechanical transducers in sensory function. The authors have shown that ASIC1a has no role in skin but a clear influence in gastrointestinal mechanotransduction. Here they investigate further ASIC1a in gut mechanoreceptors, and compare its influence with ASIC2 and ASIC3. METHODS AND RESULTS Expression of ASIC1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 40  شماره 

صفحات  -

تاریخ انتشار 2017